14,727 research outputs found

    AB effect and Aharonov-Susskind charge non-superselection

    Full text link
    We consider a particle in a coherent superposition of states with different electric charge moving in the vicinity of a magnetic flux. Formally, it should acquire a (gauge-dependent) AB relative phase between the charge states, even for an incomplete loop. If measureable, such a geometric, rather than topological, AB-phase would seem to break gauge invariance. Wick, Wightman and Wigner argued that since (global) charge-dependent phase transformations are physically unobservable, charge state superpositions are unphysical (`charge superselection rule'). This would resolve the apparent paradox in a trivial way. However, Aharonov and Susskind disputed this superselection rule: they distinguished between such global charge-dependent transformations, and transformations of the relative inter-charge phases of two particles, and showed that the latter \emph{could} in principle be observable! Finally, the paradox again disappears once we considers the `calibration' of the phase measured by the Aharonov-Susskind phase detectors, as well as the phase of the particle at its initial point. It turns out that such a detector can only distinguish between the relative phases of two paths if their (oriented) difference forms a loop around the flux

    Correlated Equilibria of Classical Strategic Games with Quantum Signals

    Full text link
    Correlated equilibria are sometimes more efficient than the Nash equilibria of a game without signals. We investigate whether the availability of quantum signals in the context of a classical strategic game may allow the players to achieve even better efficiency than in any correlated equilibrium with classical signals, and find the answer to be positive.Comment: 8 pages, LaTe

    Zeno effect and ergodicity in finite-time quantum measurements

    Full text link
    We demonstrate that an attempt to measure a non-local in time quantity, such as the time average \la A\ra_T of a dynamical variable AA, by separating Feynman paths into ever narrower exclusive classes traps the system in eigensubspaces of the corresponding operator \a. Conversely, in a long measurement of \la A\ra_T to a finite accuracy, the system explores its Hilbert space and is driven to a universal steady state in which von Neumann ensemble average of \a coincides with \la A\ra_T. Both effects are conveniently analysed in terms of singularities and critical points of the corresponding amplitude distribution and the Zeno-like behaviour is shown to be a consequence of conservation of probability

    Long-Term Contracts and Asset Specificity Revisited –An Empirical Analysis of Producer-Importer Relations in the Natural Gas Industry

    Get PDF
    In this paper, we analyze structural changes in long-term contracts in the international trade of natural gas. Using a unique data set of 262 long-term contracts between natural gas producers and importers, we estimate the impact of different institutional, structural and technical variables on the duration of contracts. We find that contract duration decreases as the market structure of the industry develops to more competitive regimes. Our main finding is that contracts that are linked to an asset specific investment are on average four years longer than those who are not

    Long-Term Contracts and Asset Specificity Revisited: An Empirical Analysis of Producer-Importer Relations in the Natural Gas Industry

    Get PDF
    In this paper, we analyze structural changes in long-term contracts in the international trade of natural gas. Using a unique data set of 262 long-term contracts between natural gas producers and importers, we estimate the impact of different institutional, structural and technical variables on the duration of contracts. We find that contract duration decreases as the market structure of the industry develops to more competitive regimes. Our main finding is that contracts that are linked to an asset specific investment are on average four years longer than those who are not.asset specificity, econometric analysis, long-term contracts, natural gas

    No-cloning theorem in thermofield dynamics

    Full text link
    We discuss the relation between the no-cloning theorem from quantum information and the doubling procedure used in the formalism of thermofield dynamics (TFD). We also discuss how to apply the no-cloning theorem in the context of thermofield states defined in TFD. Consequences associated to mixed states, von Neumann entropy and thermofield vacuum are also addressed.Comment: 16 pages, 3 figure

    Magnetic dipole excitations in nuclei: elementary modes of nucleonic motion

    Full text link
    The nucleus is one of the most multi-faceted many-body systems in the universe. It exhibits a multitude of responses depending on the way one 'probes' it. With increasing technical advancements of beams at the various accelerators and of detection systems the nucleus has, over and over again, surprised us by expressing always new ways of 'organized' structures and layers of complexity. Nuclear magnetism is one of those fascinating faces of the atomic nucleus we discuss in the present review. We shall not just limit ourselves to presenting the by now very large data set that has been obtained in the last two decades using various probes, electromagnetic and hadronic alike and that presents ample evidence for a low-lying orbital scissors mode around 3 MeV, albeit fragmented over an energy interval of the order of 1.5 MeV, and higher-lying spin-flip strength in the energy region 5 - 9 MeV in deformed nuclei, nor to the presently discovered evidence for low-lying proton-neutron isovector quadrupole excitations in spherical nuclei. To the contrary, we put the experimental evidence in the perspectives of understanding the atomic nucleus and its various structures of well-organized modes of motion and thus enlarge our discussion to more general fermion and bosonic many-body systems.Comment: 59 pages, 59 figures, accepted for publication in Rev. Mod. Phys

    Definition and evolution of quantum cellular automata with two qubits per cell

    Full text link
    Studies of quantum computer implementations suggest cellular quantum computer architectures. These architectures can simulate the evolution of quantum cellular automata, which can possibly simulate both quantum and classical physical systems and processes. It is however known that except for the trivial case, unitary evolution of one-dimensional homogeneous quantum cellular automata with one qubit per cell is not possible. Quantum cellular automata that comprise two qubits per cell are defined and their evolution is studied using a quantum computer simulator. The evolution is unitary and its linearity manifests itself as a periodic structure in the probability distribution patterns.Comment: 13 pages, 4 figure
    • …
    corecore